
IJREAT International Journal of Research in Engineering & Advanced Technology, Volume 1, Issue 5, Oct-Nov, 2013

ISSN: 2320 - 8791

www.ijreat.org

www.ijreat.org
Published by: PIONEER RESEARCH & DEVELOPMENT GROUP (www.prdg.org)

1

FEASIBLEFEASIBLEFEASIBLEFEASIBLE MECHANISMMECHANISMMECHANISMMECHANISM FORFORFORFOR BOOSTINGBOOSTINGBOOSTINGBOOSTING THETHETHETHE DATADATADATADATA

ACCESSACCESSACCESSACCESS BYBYBYBY PUSHPUSHPUSHPUSH BASEDBASEDBASEDBASED CONSISTENCYCONSISTENCYCONSISTENCYCONSISTENCY &&&&

EFFICIENTEFFICIENTEFFICIENTEFFICIENT REPLICATIONREPLICATIONREPLICATIONREPLICATION TECHNIQUETECHNIQUETECHNIQUETECHNIQUE ININININ MANETMANETMANETMANET

Nithya Preya.S
1
 and Dr. V.L.Jyothi

2

1M.E, C.S.E, Jeppiar Engineering College, Chennai, Tamil Nadu, India

2C.S.E, Jeppiar Engineering College, Chennai, Tamil Nadu, India

Abstract
Data caching is essential in a mobile ad hoc network

(MANET) as it reduces contention in the network, increases

the probability of nodes getting the desired data, and

improves the system performance. The major issue that

cache management faces is the maintenance of data

consistency between the client cache and the server. All

messages sent between the server and the cache are subject

to network delays and download delays that are considerably

noticeable and more severe in wireless mobile devices. In

order to cope up with these cache inconsistencies, we

propose a cache consistency scheme for caching database

data in MANETs. In this method for data caching, the

queries that are submitted by requesting nodes are stored in

special nodes, called query directories and the response data

is stored in the requested nodes, called caching nodes. The

technique uses query directories to locate the data

(responses) from caching nodes. In this server-based

scheme, control mechanisms are implemented to adapt the

process of caching a data item and updating the cache

according to its popularity and its data update rate at the

server. The proposed server based approach intends to solve

many issues associated with traditional push-based cache

consistency approaches and reduce wireless traffic by tuning

the cache update rate to the request rate for the cached data.

Moreover MANETs are more susceptible to attacks. The

security and cache consistent scheme presented in this paper

mitigates security attacks in query nodes of server control

cache mode in mobile networks. It eliminates fake requests

in query nodes. Furthermore to enhance the boost the data

access over the network, the data replication is also

implemented along with the consistency. The replication is

done for the most requested data item for feasible data

access results. The results are implemented using the NS2

simulator and evaluation is done based on the analysis.

 Keywords— Data caching, cache consistency,

invalidation, server-based approach, MANET.

1. INTRODUCTION

In a mobile ad hoc network (MANET), data

caching is essential as it reduces contention in the

network, increases the probability of nodes getting

desired data, and improves system performance . The

major issue that faces cache management is the

maintenance of data consistency between the client

cache and the server. As mobile ad hoc network is

becoming increasingly widespread, the need for

developing methods to improve their performance and

reliability increases. One of the biggest challenges in

mobile ad hoc network s lies in the creation of

efficient routing techniques, but to be useful for

applications that demand collaboration; effective

algorithms are needed to handle the acquisition and

management of data in the highly dynamic

environments of mobile ad hoc networks.

In many scenarios, mobile devices or nodes

may be spread over a large area in which access to

external data is achieved through one or more access

points. However, not all nodes have a direct link with

these access points. Instead, they depend on other

nodes that act as routers to reach them. In certain

situations, the access points may be located at the

extremities of the mobile ad hoc network, where

reaching them could be costly in terms of delay, power

consumption, and bandwidth utilization.

Additionally, the access points may connect

to a costly resource for example a satellite link or an

external network that is susceptible to intrusion. For

such reasons and others dealing with data availability

and response time, caching data in mobile ad hoc

network s is a topic that deserves attention.

IJREAT International Journal of Research in Engineering & Advanced Technology, Volume 1, Issue 5, Oct-Nov, 2013

ISSN: 2320 - 8791

www.ijreat.org

www.ijreat.org
Published by: PIONEER RESEARCH & DEVELOPMENT GROUP (www.prdg.org)

2

Mobile ad hoc networks are dynamic in nature, and

therefore, a reliable caching scheme is more difficult

to achieve. Links between nodes may constantly

change as nodes move around, enter, or leave the

network. This can make storing and retrieving cached

data particularly difficult and unreliable.

The use of mobile devices adds even more complexity

due to their relatively limited computing resources for

example the processing power and storage capacity

and limited battery life. It follows that an effective

caching system for mobile ad hoc network s needs to

provide a solution that takes all of these issues into

consideration. Here the client nodes have sufficient

resources to cache portions of the database as well as

storing some data base management system query and

processing modules. An important policy of such a

solution is not to rely on a single node but to distribute

cache data and decision points across the network.

In a mobile caching mechanism for a mobile

environment is described. It investigates three levels of

granularity of caching a database item namely,

attribute caching, object caching, and hybrid caching.

Intuitively, in attribute caching frequently accessed

attributes of database objects are cached in a client’s

local storage. In object caching, the objects themselves

are cached.

 Finally, in hybrid caching, only frequently accessed

attributes of those frequently accessed database objects

are cached. This ensures that the cached attributes of

the cached objects will have a high likelihood to be

accessed in the future. This mechanism was

implemented using a cache table in each client, to

identify if a database item attribute or object is cached

in local storage. Also, if a client is connected to a

server, the client is able to retrieve the cached items

from the local storage and the un-cached items from

the server. Otherwise the client retrieves only the

cached items.

The mechanism suffers from some drawbacks since it

assumes that each mobile client only communicates

with one server while in real applications mobile client

might requests items from multiple servers. Other

issues with caching are that caching mechanisms are

conventional client-server environments are usually

page-based, primarily because the overhead for

transmitting one item or a page is almost the same.

Page-based caching mechanisms require a high degree

of locality among the items within a page to be

effective.

 In practice, database items requested by different

mobile clients via dedicated channels are different. A

physical organization that favours the locality

exhibited by one client might result in poor locality for

another. Database items within a page at a database

server thus barely exhibit any degree of locality.

Furthermore, mobile clients are powered by short-life

batteries and caching a page will result in wasting

energy when the degree of locality is low. The

overhead of transmitting a page over a low bandwidth

wireless channel would be too expensive to be

justified. It is, therefore, necessary to consider caching

at a smaller granularity in this context.

This work describes a server-based scheme

implemented on top of the COACS caching

architecture we proposed in [1].In COACS, elected

query directory (QD) nodes cache submitted queries

and use them as indexes to data stored in the nodes

that initially requested them (CN nodes). Since

COACS did not implement a consistency strategy, the

system described in this paper fills that void and adds

several improvements: 1) enabling the server to be

aware of the cache distribution in the MANET, 2)

making the cached data items consistent with their

version at the server, and 3) adapting the cache update

process to the data update rate at the server relative to

the request rate by the clients. With these changes, the

overall design provides a complete caching system in

which the server sends to the client’s selective updates

that adapt to their needs and reduces the average query

response time.

2. IMPROVED SERVER UPDATE MECHANISM

It is a server-based approach that avoids many issues

associated with push-based cache consistency

approaches. Specifically, traditional server-based

schemes are not usually aware of what data items are

currently cached, as they might have been replaced or

deleted from the network due to node disconnections.

Also, if the server data update rate is high relative to

the nodes request rate, unnecessary network traffic

would be generated, which could increase packet

dropout rate and cause longer delays in answering

node queries. This mechanism reduces wireless traffic

by tuning the cache update rate to the request rate for

the cached data.

2.1 Basic Operations

Given that no consistency mechanism was

implemented in COACS, it was necessary to introduce

four additional messages. In this mechanism, the

server autonomously sends data updates to the CNs,

IJREAT International Journal of Research in Engineering & Advanced Technology, Volume 1, Issue 5, Oct-Nov, 2013

ISSN: 2320 - 8791

www.ijreat.org

www.ijreat.org
Published by: PIONEER RESEARCH & DEVELOPMENT GROUP (www.prdg.org)

3

meaning that it has to keep track of which CNs cache

which data items. This can be done using a simple

table in which an entry consists of the id of a data item

(or query) and the address of the CN that caches the

data. A node that desires a data item sends its request

to its nearest QD. If this QD finds the query in its

cache, it forwards the request to the CN caching the

item, which, in turn, sends the item to the requesting

node (RN). Otherwise, it forwards it to its nearest QD,

which has not received the request yet. If the request

traverses all QDs without being found, a miss occurs

and it gets forwarded to the server which sends the

data item to the RN. In the latter case, after the RN

receives the confirmation from the last traversed QD

that it has cached the query, it becomes a CN for this

data item and associates the address of this QD with

the item and then sends a Server Cache Update Packet

(SCUP) to the server, which, in turn, adds the CN’s

address to the data item in its memory. This setup

allows the server to send updates to the CNs directly

whenever the data items are updated. Fig. 1 illustrates

few data request and update scenarios that are

described below.

In the figure, the requesting nodes (RNs) submit

queries to their nearest QDs, as shown in the cases of

RN1, RN2, and RN3. The query of RN1 was found in

QD1, and so the latter forwarded the request to CN1,

which returned the data directly to the RN. However,

the query of RN2 was not found in any of the QDs,

which prompted the last searched (QD1) to forward

the request to the server, which, in turn, replied to

RN2 that became a CN for this data afterward. The

figure also shows data updates (key data pairs) sent

from the server to some of the CNs.

2.2 Dealing with Query Replacements and Node

Disconnections

A potential issue concerns the server sending the CN

updates for data that have been deleted (replaced), or

sending the data out to a CN that has gone offline. To

avoid this and reduce network traffic, cache updates

can be stopped by sending the server Remove Update

Entry Packets (RUEPs). This could occur in several

scenarios. For example, if a CN leaves the network,

the QD, which first tries to forward it a request and

fails, will set the addresses of all queries whose items

are cached by this unreachable CN in its cache to -1,

and sends an RUEP to the server containing the IDs of

these queries. The server, in turn, changes the address

of that CN in its cache to -1 and stops sending updates

for these items. Later, if another node A requests and

then caches one of these items, the server, upon

receiving an SCUP from A, will associate A with this

data item. Also, if a CN runs out of space when trying

to cache a new item in, it applies a replacement

mechanism to replace id with in and instructs the QD

that caches the query associated with id to delete its

entry. This causes the QD to send an RUEP to the

server to stop sending updates for id in the future.

Fig. 1. Scenarios for requesting and getting data in the COACS

architecture.

If a caching node CNd returns to the MANET after

disconnecting, it sends a Cache Invalidation Check

Packet (CICP) to each QD that caches queries

associated with items held by this CN. A QD that

receives a CICP checks for each item to see if it is

cached by another node and then sends a Cache

Invalidation Reply Packet (CIRP) to CNd containing

all items not cached by other nodes. CNd then deletes

from its cache those items whose IDs are not in the

CIRP but were in the CICP. After receiving a CIRP

from all QDs to which it sent a CICP and deleting

nonessential data items from its cache, CNd sends a

CICP containing the IDs of all queries with data

remaining in its cache to the server along with their

versions. In the meanwhile, if CNd receives a request

from a QD for an item in its cache, it adds the request

to a waiting list. The server then creates a CIRP and

includes in it fresh copies of the outdated items and

sends it to CNd, which, in turn, updates its cache and

answers all pending requests.

Finally, QD disconnections and reconnections do not

alter the cache of the CNs, and hence, the pointers that

the server holds to the CNs remain valid.

IJREAT International Journal of Research in Engineering & Advanced Technology, Volume 1, Issue 5, Oct-Nov, 2013

ISSN: 2320 - 8791

www.ijreat.org

www.ijreat.org
Published by: PIONEER RESEARCH & DEVELOPMENT GROUP (www.prdg.org)

4

2.3 Adapting to the Ratio of Update Rate and

Request Rate

The mechanism suspends server updates when it

deems that they are unnecessary. The mechanism

requires the server to monitor the rate of local updates,

Ru, and the rate of RN requests, Rr, for each data item

di. Each CN also monitors these values for each data

item that it caches. Whenever a CN receives an update

from the server, it calculates Ru=Rr and compares it to

a threshold Ѓ. If this ratio is greater than or equal to Ѓ,

the CN will delete di and the associated information

from its cache and will send an Entry Deletion Packet

(EDP) to the QD (say, QDd) that caches query qi. The

CN includes in the header of EDP a value for Ru,

which tells QDd that di is being removed due to its

high update-torequest ratio. Normally, when a QD gets

an EDP, it removes the cached query from its cache,

but here, the nonzero value of Ru in the EDP causes

QDd to keep the query cached, but with no reference

to a CN. Next, QDd will ask the server to stop sending

updates for di. Afterward, when QDd receives a

request from an RN node that includes qi, it forwards

it to the server along with a DONT_CACHE flag in

the header to be later passed in the reply, which

includes the results, to the RN.

Under normal circumstances in COACS, when an RN

receives a data item from the server in response to a

query it had submitted, it assumes the role of a CN for

this item and will ask the nearest QD to cache the

query. The DONT_CACHE flag instructs the RN to

treat the result as if it were coming from the cache and

not become a CN for it. Now, at the server, each time

an update for qi occurs and a new Ru=Rr is computed,

if this ratio falls below a second threshold, the server

will reply to the RN with a Data Reply Packet (DREP)

that includes the CACHE_NEW flag in the header.

Upon receiving the DREP, the RN sends a Query

Caching Request packet (QCRP) with the

CACHE_NEW flag to its nearest QD. If this QD

caches the query of this item (with -1 as its CN

address), it sets its address to its new CN, else it

forwards the request to its own nearest QD. If the

QCRP traverses all QDs without being processed

(implying that the QD caching this item has gone

offline), the last QD at which the QCRP arrives will

cache the query with the CN address.

By appropriately selecting the values of Ѓ and ƛ, the

system can reduce unnecessary network traffic. The

processing time of qi will suffer though when Ru=Rr

is above ƛ after it had passed Ѓ since QDd will be

sending qi to the server each time it receives it.

However, the two thresholds allow for favoring

bandwidth consumption over response time, or vice

versa. This makes the proposed mechanism suitable

for a variety of mobile computing applications: a large

Ѓ may be used when disconnections are frequent and

data availability is important, while a low Ѓ could be

used in congested environments where requests for

data are infrequent or getting fresh data is not critical.

Fig. 2 summarizes the interactions among the entities

of the system.

2.4 Accounting for Latency in Receiving Server

Updates

Given the different processes running at the server and

since it sends the updates to the CNs via unicasts,

there may be a time gap between when an update

occurs and when the CN actually receives the updated

data item d. Hence, if the CN gets a request for d

during this time, it will deliver a stale copy of d to the

RN. Our design uses the time stamp that the server

sends with each update in an attempt to mitigate this

issue. To explain this, suppose that the time stamp sent

with d is ts and the time of receiving d by the CN is tc.

Upon getting an update, the CN checks if it had served

any RN a copy of d from its cache in the past ts-tc

milliseconds. If it is the case, the CN sends a new

DREP to the RN, but now it includes the fresh copy of

data d.

The above solution assumes that the clocks of the

nodes in the MANET and that of the server are

synchronized. This assumption is realistic given that

node clock synchronization is part of the MAC layer

protocol, as specified by the IEEE 802.11 standards

[8]. In particular, IEEE 802.11 specifies a Timing

Synchronization Function (TSF) through which nodes

synchronize their clocks by broadcasting their timing

information using periodic beacons. Since the Access

Point (AP) is considered a node in the MANET and it

can synchronize its clock with that of the server

asynchronously with respect to the MANET through

the wired network, it will be possible to synchronize

the clocks of the mobile nodes with that of the server

at almost a zero cost to them (no protocol besides the

MAC layer’s TSF is needed).

3. SECURED CACHE NODES FOR

CONSISTENT SERVER UPDATE MANET

The nodes in the mobile ad hoc have cooperative

cache. Elected query directory (QD) nodes cache

submitted queries. Cache nodes (CN nodes) store

IJREAT International Journal of Research in Engineering & Advanced Technology, Volume 1, Issue 5, Oct-Nov, 2013

ISSN: 2320 - 8791

www.ijreat.org

www.ijreat.org
Published by: PIONEER RESEARCH & DEVELOPMENT GROUP (www.prdg.org)

5

indexed data initially requested. Cooperative server

cache maintains table containing id of a data item (or

query) and address of the CN that caches the data.

Node needing a data item sends its request to its

nearest QD. If QD finds in its cache, it forwards to

CN, CN turn sends the item to requesting node (RN).

Otherwise, it forwards it to its nearest QD, if the

request traverses all QDs without being found, a miss

occurs and it gets forwarded to the server, then server

sends the data item to the RN. The cooperative cache

adopts a widely accepted system model in which each

data object is associated with a single node that can

update the source data. This node is referred to as the

data source node. Each data object can be cached by a

collection of nodes called the caching nodes. The data

copies held by the caching nodes are called the cache

copies. There are two basic mechanisms for cache

consistency maintenance i.e., push and pull. Using

push, the data source node informs the caching nodes

of data updates. Using pull, the caching node sends a

request to the data source node to check the update. In

designing cooperative cache the source data updates

and the cache queries follow the Poisson Process. The

routing protocol employed in the network layer

provides the hop count between each pair of nodes,

and the hop count of data transmission is used to

measure the consistency maintenance.

3.1 Consistent Server Cache Updates

The consistent server cache updates provides data

Consistency based on the Pull with TTR. In Pull with

TTR, each cache copy is associated with a timeout

value Time to Refresh (TTR). The initial value of TTR

is set to d. When TTR is valid (TTR > 0), the caching

node directly serve cache queries. When TTR expires,

the caching node first pulls the data source node to

update the cache copy and to renew TTR to d. Then

the caching node can directly serve cache queries. By

associating a TTR value with each cache copy, GWSP

guarantees that deviation between the source data and

the cache copy will not be over d, thus ensuring data

Consistency. Although the Pull with TTR algorithm

guarantees data Consistency, it is not cost effective,

mainly due to the round–trip consistency maintenance

cost imposed by the pull mechanism.

3.2 Selective Push

Using push, the data source node informs the caching

nodes of data updates, which only imposes one way

consistency maintenance cost (traffic overhead, query

latency etc.). However, if the data source node is

unaware of the cache status of each cache copy, there

exist redundant data update propagations in the

following two cases i.e., After the cache copy and the

associated TTR are renewed via push, there comes no

cache query before the TTR expires. Before the TTR

expires, there are multiple data updates (only the last

data update should make the data source node push the

caching nodes); Thus, the following design principles

should be followed in designing GWSP: use the push

mechanism to save consistency maintenance cost, but

Push only if the cache copy is expected to serve

queries, Push if there are probably no other data

updates before TTR expires, Upon the source data

update at tu, consider the cache status on one aching

node. The TTR of this cache copy was renewed (via

push or pull) at time t0. According to the design

principles, the data source node pushes one caching

node only when the following two requirements are

both satisfied. The first one is the probability that there

is at least one query in period (t0+ä, tu+ä) is greater

than threshold value Ѓ. The second one is the

probability that there is at least one update in period

(tu, t0+d) is less than threshold value Ѓ.

3.3 Data Update Propagation

After the data source node has decided the Push Set,

i.e., the caching nodes which should receive the data

update, it needs to decide how to propagate the data

updates among the selected caching nodes. The

mechanism employs a greedy but efficient strategy to

disseminate the PUSH message (which contains the

source data update and IDs of the push set nodes) to

all caching nodes in the push set. The data source node

sends the PUSH message to the nearest caching node

in the push set via unicast.

The caching node which receives the PUSH message

deletes itself from the push set. It acknowledges the

PUSH message with a PUSH_ACK message, and then

goes on relaying the push message to the nearest

caching node in the push set (The path length between

two nodes are provided by the routing protocol,

according to our assumption). This process is repeated

until the push set is empty. The last caching node will

send a PUSH message to the data source node, which

initiates the PUSH message propagation process.

3.4 Attack Vulnerabilities in Query Nodes

MANET with low-overhead made complex to monitor

an environment, some of their attributes make them

even more susceptible to security attack or damage. A

device with scarce resources is at risk of resource

consumption under normal circumstances. When an

IJREAT International Journal of Research in Engineering & Advanced Technology, Volume 1, Issue 5, Oct-Nov, 2013

ISSN: 2320 - 8791

www.ijreat.org

www.ijreat.org
Published by: PIONEER RESEARCH & DEVELOPMENT GROUP (www.prdg.org)

6

adversary is actively attempting to improperly

consume or destroy its resources, the situation is

worse. Other attributes are remote location, i.e.,

networks that are distant or unmonitored have a

greater response time if manual (physical) intervention

is required.

Large scale, due to the large number of devices likely

to be deployed, manual intervention on each device is

not feasible within cost constraints. If vulnerability is

discovered and exploited in the program code, it will

be no small matter to physically collect, reprogram,

and redeploy each device. Application specificity,

resource constraints dictate that well-defined and

uncoupled network layers are compressed or merged,

reducing code modularity. Unforeseen interactions

between network layers and services may give rise to

new vulnerabilities. Attractive target, the systems

monitored or controlled is safety-critical or highly

visible, with significant consequences for failure.

Depending on the motivation of the attacker, this may

be precisely the profile of an attractive target. To

achieve a better understanding of the risks faced by the

network, explain taxonomy of security attacks against

cache nodes of the MANET.

The taxonomy allows us to reason about attacks at a

level higher than a simple list of vulnerabilities. It

provides a classification system that ideally suggests

ways to mitigate attacks by prevention, detection, and

recovery. It can aid risk management by identifying

vulnerabilities and making attacker characteristics

explicit. The attacker has an identity and a motive, and

is able to do certain things in or to the MANET. An

attack targets some service or layer, exploiting

vulnerability. An attack may be thwarted, or it may

succeed with varying results. Each of these elements is

necessary to understand the whole process of security

attacks of cache nodes.

The two types of security attacks are passive and

active. In passive attacks, selfish nodes use the

network but do not cooperate, saving battery life for

their own communications: they do not intend to

directly damage other nodes. In Active attacks,

malicious nodes damage other nodes by causing

network outage by partitioning while saving battery

life is not a priority.

Firewall Mechanism to Thwart Security Attack

In security attacks, the hacker’s objective is to render

target cache nodes inaccessible by legitimate users.

MANET without sufficient protection from security

attacks may not be deployable in many areas. Apart

from special cases whereby an a priori trust exists in

all nodes, the nodes of an ad hoc network cannot be

trusted for the correct execution of critical network

functions. Essential network operations that assure

basic connectivity can be heavily jeopardized by nodes

that do not properly execute their share of the network

operations like routing, packet forwarding, name-to

address mapping, and so on. Node misbehavior that

affects these operations range from simple selfishness

or lack of collaboration due to the need for power

saving to active attacks aiming at security attacks and

subversion of traffic are safeguarded by the firewall.

4. BASIC FEATURES OF THE SYSTEM

Follwing are the important features of the system,

4.1 Request Handling

The request from the client i.e from the request

Node(RN) is handled by passing over the query to the

Query directory, which processes further to the cache

node or server. Hence this feature functionalities

involved in Query Directory (QD), Caching Node

(CN), Requesting Node (RN) and Server.

4.2 Network Monitoring

This feature plays a major functionality over the

network nodes. Whenever a node goes offline or fails

to respond, to avoid congestion and delay the network

is monitored periodically. The monitoring also enables

the cache CN for maintaining and replacing the stale

data.

4.3 Traffic Maintenance

When there is a delay in the data response the request

rate of the data becomes higher due to repeated

queries, To avoid congestion of queries tuning of the

update rate and request rate of each data item are made

simultaneously between the CN and server.

4.4 Election of QD & CN

Over a large area network, based on the statistical

analysis of successful data transmissions and of high

battery power and powerful efficiency the Query

directory QD is chosen initially as soon as the network

is initiated by a node. Whenever the node gets the

requested response from the server it become the

IJREAT International Journal of Research in Engineering & Advanced Technology, Volume 1, Issue 5, Oct-Nov, 2013

ISSN: 2320 - 8791

www.ijreat.org

www.ijreat.org
Published by: PIONEER RESEARCH & DEVELOPMENT GROUP (www.prdg.org)

7

official owner of the data until updation of data, the

requested node itself serves thereafter the caching

Node CN for that data item. This data item

information is sent to the QD, so when other RN

request data the data is cached from the current CN.

4.5 Cache Replication

Let us consider a situation of if the request rate for the

particular data item is high, it results in numerous hits

in a particular QD & CN for that particular data item.

This might cause network congestion. One optimal

solution for the above problem is that by replicating

the cache.

To make the replication feasible for the data item, to

avoid unnecessary data storage over the cache, the

replication is done only for the data item whose

request rate higher than the threshold value, those data

items are distributed to more than one caching node in

the network. The threshold value is set on the basis of

the network tuning condition of the request rate and

update rate. When the congestion in the network is

high the threshold value is set to minimum, and for

low congestion the we tune the threshold to the lower

value. Usually for the normal networks i.e when there

is no congestion, the threshold value is set as 0.50 for

normal networks, while 0.75 for congests networks.

While replicating the data the we must consider the

following factors for optimal storage over the cache

nodes over the network,

• The same QD should not contain the

replication cache, since the current QD stores

the information about the present caching

node for that data in order to avoid the

network congestion in that QD.

• The ratio Ru/Rr is calculated for each and

every requested data item, if the ratio falls

within the replication's threshold value then

the data is replicated in a different QD.

• Once the ratio fall below 0.75 for a data

item the caching node send the request to the

server for cache replication and get the

permission for the replication. When a new

RN node requests for the same data item,

then the Query caching request packet

(QCRP) is sent to the new RN, and then

cached by that node.

4.6 Data Replication
This feature is responsible to replicate the

most requested data to the new cache node and

provide the corresponding cached information to the

nearest QD. Also this information is sent to the server

to maintain the cache consistency.The also the enables

to reduce the network contention.

The above features are responsible for the network

functionalities based on which the entire system is

built.

5. LITERATURE SURVEY

Several cache consistency (invalidation) schemes have

been proposed in the literature for MANETS. In

general, these schemes fall into three categories: 1)

pull- or client-based, where a caching node (CN) asks

for updates from the server, 2) push- or server-based,

where the server sends updates to the CN, and 3)

cooperative, where both the CN and the server

cooperate to keep the data up-to-date. In general, pull-

based strategies achieve smaller query delay times at

the cost of higher traffic load, whereas push-based

strategies achieve lower traffic load at the cost of

larger query delays. Cooperative-based strategies tend

to be halfway between both ends. In this section, we

restrict our literature survey to server-based strategies

so as to provide a comparative study in relationship to

the approach of our proposed system.

5.1 Invalidation Reports

Server-based approaches generally employ

invalidation reports (IRs) that are periodically

broadcasted by the server. An IR normally carries the

IDs of the updated data items and the time stamps of

the updates. When a query is generated, the node waits

for the periodic IR to invalidate its cache (if

connected) and answer the query if it has a valid item.

If the requested item is invalid, it usually waits for the

periodic IR, or as in some proposed schemes, like the

Modified Time Stamp (MTS) mechanism of [12], it

broadcasts a request packet that gets forwarded to the

server without waiting for the periodic IR. Such

schemes generally suffer from large average delays

due to waiting for the periodic IR or from high traffic

in case broadcasts are employed when misses occur

and the request rate is high.

Most research in this area has focused on reducing the

time intervals between updates or making the process

of sending update reports less static. In the improved

IR technique that was presented by Cao [5] and which

we implemented to compare the proposed system to,

the time between two consecutive IRs was divided

into intervals. At the beginning of each interval, the

IJREAT International Journal of Research in Engineering & Advanced Technology, Volume 1, Issue 5, Oct-Nov, 2013

ISSN: 2320 - 8791

www.ijreat.org

www.ijreat.org
Published by: PIONEER RESEARCH & DEVELOPMENT GROUP (www.prdg.org)

8

server broadcasts a UIR, which contains the IDs of

data items updated since the last IR. This UIR reduces

the query latency time since a node that needs to

answer a query only waits until the next UIR to see

whether the item has been updated instead of waiting

until the next IR (the UIR interval may be adjusted

dynamically according to the average request rate of

the network). This approach can also decrease

generated traffic by making the server save a list of the

submitted requests to each item after which it

broadcasts this list followed by the updated data items.

This approach may be best suited to high update rate

situations because it does not overwhelm the network

with updates immediately upon their occurrence.

Another improvement over the basic IR approach was

proposed by Li et al. [11]. The basic idea is for each

node to cache the last K reports that are broadcasted

by the server, and for the server to store the IRs for

future use. Using the time stamps of the IRs it caches,

when a node goes offline and comes back online, it

determines the IRs that it missed and pulls them from

the server to validate its cache. If the node misses

more than K IRs, it drops the entire cache. Several

approaches attempted to make the process of sending

reports dynamic [6], [12], [17]. Yuen et al. [17]

proposed a scheme by absolute validity interval (AVI)

that is calculated dynamically by the server based on

the update rate. A client considers an item invalid after

its AVI expires and may drop or update it from the

server. The server periodically broadcasts an IR that

contains the changes to AVIs of items to make clients

caching these items update the cached AVI with its

new value in the IR. Thus, the size and interval of the

IR could be improved. This approach, however, still

exhibits access delays introduced by periodic

broadcasts. Similarly, Kai and Lu [10] proposed to

broadcast the reports dynamically based on the

updating frequency of the data items. Chung and

Hwang [12] took this concept further by adapting the

broadcast of reports to the update pattern and data

locality on the server. A serious issue, however, arises

with the above approaches when the frequency of

updates at the server is high, which could overload the

clients with update reports.

5.2 Energy-Efficient Cache Invalidation

A different approach was taken by Cai and Tan [3] in

proposing three energy-efficient selective cache

invalidation schemes based on the group invalidation

method in which a separate IR is broadcasted for each

group of items. These strategies allow clients to

selectively tune to the portions of the invalidation

report that are of interest to them, while returning to

sleep or idle modes during the rest of the IR. This can

be done by including at the beginning of the IR an

index of the rest of the remaining data in the report.

This technique produces good results when the update

rate is high, but makes the size of the IR quite large.

5.3 Cache Invalidation Using Bit Sequences

In order to reduce the size of the IR, Jing et al. [9]

proposed using bit sequences (BSs), according to

which the data server broadcasts a sequence of bits

with a time stamp, where each bit represents a data

item, and its position in the sequence represents an

index to its corresponding item. The clients get the

mapping of bits to the names of data items from the

server. A value of 1 in the BS means that the

corresponding item has been updated since the last IR,

and a value of 0 indicates otherwise. The authors

improved on the BS algorithm in [7] through a

multidimensional bit sequence. The granularity of

each bit in the BS was varied according to the size of

the database at the server. For example, for an 8 GB

database, each bit can represent an 8 MB data block,

which allows for representing the database with a BS

of 1,024 bits. The client retrieves data from the

database as data pages and updates each cached item

that contains at least one page from an updated block

(with corresponding bit equal to 1 in the BS).

Moreover, the granularity of each bit was dynamically

adjusted according to the popularity of the

corresponding block of the database that it represents

(whether it is hot or cold). All the BS algorithms

perform best when the update rate is low, but suffer

from drawbacks when the update rate is high, as was

stated by the authors.

5.4 Selective Data Push

Huang et al. present in [14] a Greedy Walk-Based

Selective Push (GWSP) method that attempts to

reduce the redundancy in conventional push

mechanisms by pushing updates only if the CN is

expected to serve queries and if there are no more data

updates before the Time-to-Refresh (TTR) expires.

This is done by maintaining the state of the cached

data at the data server, which stores the TTR value and

the query rate associated with cached data. Based on

this state information, the server selects the CNs to

send the updates to and creates a push set that contains

the CNs that should receive updates. This method is

compared with a dynamic pull-mechanism in which

the CN maintains a TTR for the cached data and pulls

updates accordingly. Reported results show that

IJREAT International Journal of Research in Engineering & Advanced Technology, Volume 1, Issue 5, Oct-Nov, 2013

ISSN: 2320 - 8791

www.ijreat.org

www.ijreat.org
Published by: PIONEER RESEARCH & DEVELOPMENT GROUP (www.prdg.org)

9

GWSP exhibits lower generated traffic load and lower

query latency at low query rates, but tends to have

similar delays at larger rates.

5.5 Consistency Based on Location

The consistency of location-dependent data was

studied in [16], which proposes methods to validate

and update information that change their values

depending on the location of the client, like traffic

reports and parking information. In this context, not

only the temporal consistency but also the location-

dependent consistency (due to client mobility) is taken

into consideration. A data item can have different

values for different locations: when a mobile host

caching an item moves from one of the cells to

another, the value of the item may become obsolete

and needs to be updated. One of the methods proposed

by the authors is the Implicit Scope Information (ISI)

scheme in which the client stores the valid scopes of

each item and the server periodically broadcasts the

changes of validity of each data item. Finally, we

conclude that besides the latency issue that is

associated with the push-based techniques, their basic

problem is that the IR or UIR reports typically contain

information that is not of interest to a large number of

nodes, thus costing them wasted processing time and

bandwidth.

Even cooperative-based mechanisms, which try to

combine the advantages of push and pull strategies,

also inherit their disadvantages halfway. For example,

the simulation results of the scheme in [9] show that

both the query delay and traffic load fall between the

measures of pure push and pull strategies. To our

knowledge, no existing scheme actually adapts the

frequency of update reports to both the rate of updates

at the server and that of data requests by the clients, to

render a truly dynamic system. Our work addresses

both of the above two issues, which is made in part

possible by the architecture of COACS.

6. EXPERIMENTAL RESULTS

The described system is very expensive to implement

in reality, hence the system is implemented using NS2

simulator and results are verified accordingly,

The comparisons of the parameters show the

performance analysis of the system.

1. Delay Vs Threshold Rate:

The results below show that the query delay is reduced

correspondingly at different threshold levels,

Fig 2

1. Update Delay Vs Threshold Rate

The results below show that the update delay is

reduced correspondingly at different threshold levels,

Fig 3

2. Update Delay Vs Number of Nodes

The results analysis results in efficient even if the

number of nodes increase the update delay decreases

in a constant manner.

Fig 4

IJREAT International Journal of Research in Engineering & Advanced Technology, Volume 1, Issue 5, Oct-Nov, 2013

ISSN: 2320 - 8791

www.ijreat.org

www.ijreat.org
Published by: PIONEER RESEARCH & DEVELOPMENT GROUP (www.prdg.org)

10

3. Update Delay Vs Query Request Rate

Update delay with respect to the query rates Ru/Rr is

calculated, the system produces efficiency by reducing

the update delay,

Fig 5

4. Query Delay Vs Data Update Rate:

The query delay for different data update rate in the

cache nodes, are evaluated and resulted in update

delay was reduced to a feasible extent, as shown in

fig.5

Fig 5

7. CONCLUSION AND FUTURE

ENHANCEMENT

In this paper, a novel mechanism is presented for

maintaining cache consistency in a Mobile Ad hoc

Network. The evaluation results confirmed our

analysis of the scalability of the system. That is, they

indicate that even when the node density increases or

the node request rate goes up, the query request delay

in the system is either reduced or remains practically

unaffected, while the cache update delay experiences a

moderate rise. Yet, even if a higher update. The delay

means that the probability of nodes getting stale data

increases, the proposed system includes a provision

for keeping track of such nodes and supplying them

with fresh data within a delta time limit. Hence, it can

be concluded that the system can scale to a moderately

large network even when nodes are requesting data

frequently. Moreover, the increase in the node speed

and disconnection rate also only affected the cache

update delay, and to a lesser extent, the traffic in the

network. This reflects on the robustness of the

architecture and its ability to cope with dynamic

environments. This has been achieved by the

simulation of nodes and the data is send from request

node through query directory, the request node got the

response from the cache node. The cache node is

automatically updated by the server.

The approach in [14], on the other hand, ensures data

confidentiality, integrity, and availability by

establishing a security association (SA) between each

two end-to-end communicating nodes. Both

approaches were discussed and evaluated in [13] from

which we can deduce that [2] is better suited since it

satisfies many security requirements, while [14]

introduces much overhead as it requires data

redundancy. For our future work, we will do a

thorough investigation of the possible threats that

could disrupt the operations of the proposed

mechanism and devise security mechanisms that

safeguard it by either building on existing approaches,

like [2] and [15], and/or developing new ones.

 REFERENCES

[1] H. Artail, H. Safa, K. Mershad, Z. Abou-Atme, and N.

Sulieman,“COACS: A Cooperative and Adaptive Caching

System for MANETS,” IEEE Trans. Mobile Computing,

vol. 7, no. 8, pp. 961-977, Aug. 2008.

[2] N.A. Boudriga and M.S. Obaidat, “Fault and Intrusion

Tolerance in Wireless Ad Hoc Networks,” Proc. IEEE

Wireless Comm. and Networking Conf. (WCNC), vol. 4,

pp. 2281-2286, 2005.

[3] J. Cai and K. Tan, “Energy-Efficient Selective Cache

Invalidation,” Wireless Networks J., vol. 5, no. 6, pp. 489-

502, Dec. 1999.

[4] J. Cao, Y. Zhang, L. Xie, and G. Cao, “Consistency of

Cooperative Caching in Mobile Peer-to-Peer Systems over

MANETs,” Proc. Third Int’l Workshop Mobile

Distributed Computing, vol. 6, pp. 573-579, 2005.

IJREAT International Journal of Research in Engineering & Advanced Technology, Volume 1, Issue 5, Oct-Nov, 2013

ISSN: 2320 - 8791

www.ijreat.org

www.ijreat.org
Published by: PIONEER RESEARCH & DEVELOPMENT GROUP (www.prdg.org)

11

[5] G. Cao, “A Scalable Low-Latency Cache Invalidation

Strategy for Mobile Environments,” IEEE Trans.

Knowledge and Data Eng.,vol. 15, no. 5, pp. 1251-1265,

Sept. 2003.

[6] P. Cao and C. Liu, “Maintaining Strong Cache Consistency

in the World-Wide Web,” IEEE Trans. Computers, vol.

47, no. 4, pp. 445-457, Apr. 1998.

 [7] A. Elmagarmid, J. Jing, A. Helal, and C. Lee, “Scalable

Cache Invalidation Algorithms for Mobile Data Access,”

IEEE Trans Knowledge and Data Eng., vol. 15, no. 6, pp.

1498-1511, Nov. 2003.

 [8] IEEE Standard 802.11, Wireless LAN Medium Access

Control (MAC) and Physical Layer (PHY) Specification,

IEEE, 1999.

[9] J. Jing, A. Elmagarmid, A. Helal, and R. Alonso, “Bit-

Sequences: An Adaptive Cache Invalidation Method in

Mobile Client/Server Environments,” Mobile Networks

and Applications, vol. 15, no. 2, pp. 115-127, 1997.

[10] X. Kai and Y. Lu, “Maintain Cache Consistency in Mobile

Database Using Dynamical Periodical Broadcasting

Strategy,” Proc. Second Int’l Conf. Machine Learning and

Cybernetics, pp. 2389-2393, 2003.

[11] W. Li, E. Chan, Y. Wang, and D. Chen, “Cache

Invalidation Strategies for Mobile Ad Hoc Networks,”

Proc. Int’l Conf. Parallel Processing, Sept. 2007.

[12] S. Lim, W.-C. Lee, G. Cao, and C.R. Das, “Performance

Comparison of Cache Invalidation Strategies for Internet-

Based Mobile-Ad Hoc Networks,” Proc. IEEE Int’l Conf.

Mobile Ad-Hoc and Sensor Systems, pp. 104-113, Oct.

2004.

[13] M.N. Lima, A.L. dos Santos, and G. Pujolle, “A Survey of

Survivability in Mobile Ad Hoc Networks,” IEEE Comm.

Surveys and Tutorials, vol. 11, no. 1, pp. 66-77, First

Quarter 2009.

[14] P. Papadimitratos and Z.J. Haas, “Secure Data

Transmission in Mobile Ad Hoc Networks,” Proc. ACM

Workshop Wireless Security (WiSe ’03), pp. 41-50, 2003.

[15] W. Stallings, Cryptography and Network Security, fourth

ed. Prentice Hall, 2006.

[16] J. Xu, X. Tang, and D. Lee, “Performance Analysis of

Location-Dependent Cache Invalidation Schemes for

Mobile Environments,” IEEE Trans. Knowledge and Data

Eng., vol. 15, no. 2, pp. 474-488, Feb. 2003.

[17] J. Yuen, E. Chan, K. Lain, and H. Leung, “Cache

Invalidation Scheme for Mobile Computing Systems with

Real-Time Data,” SIGMOD Record, vol. 29, no. 4, pp.

34-39, Dec. 2000.

